Topological defects in nematics Topological defects everywhere? Zoology of line defects Geometry of line defects Geometric phase

Overview of lecture 1

• The self-organization of rod-like molecules gives rise to hybrid states or mesophases, that are half-liquid (they can flow) and half-solid (they have anisotropic properties) = liquid crystals.

Nematic

Smectic A

Cholesteric

Sébastien Fumeron

Topological defects

Topological defects in nematics Topological defects everywhere? Zoology of line defects Geometry of line defects Geometric phase

Overview of lecture 1

- The simplest mesophase is the nematic phase, in which there is no positional order and a long-range orientational order: the average local orientation of the molecular axis is given by the director field *n*.
- The degree of orientational order is described by the scalar order parameter S

$$S = \langle P_2(\cos\theta) \rangle = \left\langle \frac{3}{2} \cos^2\theta - \frac{1}{2} \right\rangle$$

• Anisotropy \Rightarrow Physical properties are different along *n* and orthogonally to it.

Example: optics
$$\mathbf{D} = \stackrel{=}{\varepsilon} \mathbf{E} = \begin{bmatrix} \varepsilon_{\perp} & 0 & 0 \\ 0 & \varepsilon_{\perp} & 0 \\ 0 & 0 & \varepsilon_{\parallel} \end{bmatrix}$$

Topological defects in nematics Topological defects everywhere? Zoology of line defects Geometry of line defects Geometric phase

Overview of lecture 1

symmetry

group

• The isotropic-nematic phase transition presents a spontaneous symmetry breaking:

Topological defects in nematics Topological defects everywhere? Zoology of line defects Geometry of line defects Geometric phase

Overview of lecture 1

M Kleman et al. Phil Mag 86, 4117 (2006)

 The isotropic-nematic phase transition presents a spontaneous symmetry breaking leading to defect production:

isotropic liquid

Domino cascade = SSB

nematic mesophase with a defect

Sébastien Fumeron

Topological defects

Topological defects in nematics Topological defects everywhere? Zoology of line defects Geometry of line defects Geometric phase

Overview of lecture 1

• The order parameter space is the real projective plane $M = SO(3)/O(2) \sim S^2/Z_2 \leftrightarrow \ll$ Boy surface »

• The content of homotopy groups predicts the kind of defects that may appear in the mesophase:

$\pi_0(M) = I$	$\pi_1(M)=Z_2$	$\pi_2(M) = \mathbb{Z}$	$\pi_3(M) = \mathbb{Z}$
No domain wall	Line defects: disclinations	Monopoles: hedgehogs	Textures: skyrmions
	Sébastien Fumeron	Topological defects	

Topological defects in nematics Topological defects everywhere? Zoology of line defects Geometry of line defects Geometric phase

Overview of lecture 1

• The content of the first homotopy group means that there are only two equivalence classes for the linear defects:

These two classes of defects can be combined according to the algebra of $\mathbb{Z}/2\mathbb{Z}$:

Part II. Topological defects in nematics

Sébastien Fumeron

Topological defects

Zoology of line defects Geometry of line defects Geometric phase

Nematoelasticity in a nutshell

• Consider a given director field $n_0(r)$. Deformations about that configuration are orthogonal to $n_0(r)$ as

 $\boldsymbol{n}_0.\boldsymbol{n}_0=1 \Rightarrow \boldsymbol{n}_0.\delta\boldsymbol{n}=0$

To simplify, if one takes $\mathbf{n}_0(\mathbf{r}) = \mathbf{e}_3$, then $\delta \mathbf{n} = (\delta n_1, \delta n_2, 0)$. Let be $\mathbf{n} = \mathbf{n}_0 + \delta \mathbf{n}$, a Taylor expansion gives:

$$\begin{pmatrix} \delta n_1 \\ \delta n_2 \end{pmatrix} = \begin{pmatrix} \frac{\partial n_1}{\partial x_1} \delta x_1 + \frac{\partial n_1}{\partial x_2} \delta x_2 + \frac{\partial n_1}{\partial x_3} \delta x_3 + \dots \\ \frac{\partial n_2}{\partial x_1} \delta x_1 + \frac{\partial n_2}{\partial x_2} \delta x_2 + \frac{\partial n_2}{\partial x_3} \delta x_3 + \dots \end{pmatrix}$$

Zoology of line defects Geometry of line defects Geometric phase

Nematoelasticity in a nutshell

• Consider a given director field $n_0(r)$. Deformations about that configuration are orthogonal to $n_0(r)$ as

 $\boldsymbol{n}_0.\boldsymbol{n}_0=1 \Rightarrow \boldsymbol{n}_0.\delta\boldsymbol{n}=0$

To simplify, if one takes $\mathbf{n}_0(\mathbf{r}) = \mathbf{e}_3$, then $\delta \mathbf{n} = (\delta n_1, \delta n_2, 0)$. Let be $\mathbf{n} = \mathbf{n}_0 + \delta \mathbf{n}$, a Taylor expansion gives:

$$\begin{pmatrix} \delta n_1 \\ \delta n_2 \end{pmatrix} = \frac{1}{2} \begin{bmatrix} \frac{\partial n_1}{\partial x_1} + \frac{\partial n_2}{\partial x_2} & 0 \\ 0 & \frac{\partial n_1}{\partial x_1} + \frac{\partial n_2}{\partial x_2} \end{bmatrix} \begin{pmatrix} \delta x_1 \\ \delta x_2 \end{pmatrix} + \frac{1}{2} \begin{bmatrix} 0 & \frac{\partial n_1}{\partial x_2} - \frac{\partial n_2}{\partial x_1} \\ -\frac{\partial n_1}{\partial x_2} + \frac{\partial n_2}{\partial x_1} & 0 \end{bmatrix} \begin{pmatrix} \delta x_1 \\ \delta x_2 \end{pmatrix}$$

$$+\frac{1}{2}\begin{bmatrix}\frac{\partial n_{1}}{\partial x_{1}}-\frac{\partial n_{2}}{\partial x_{2}}&\frac{\partial n_{1}}{\partial x_{2}}+\frac{\partial n_{2}}{\partial x_{1}}\\\frac{\partial n_{1}}{\partial x_{2}}+\frac{\partial n_{2}}{\partial x_{1}}&-\frac{\partial n_{1}}{\partial x_{1}}+\frac{\partial n_{2}}{\partial x_{2}}\end{bmatrix}\begin{pmatrix}\delta x_{1}\\\delta x_{2}\end{pmatrix}+\delta x_{3}\begin{pmatrix}\frac{\partial n_{1}}{\partial x_{3}}\\\frac{\partial n_{2}}{\partial x_{3}}\end{pmatrix}$$

Sébastien Fumeron

Topological defects

Zoology of line defects Geometry of line defects Geometric phase

Nematoelasticity in a nutshell

• First term:

$$\frac{1}{2} \begin{bmatrix} \frac{\partial n_1}{\partial x_1} + \frac{\partial n_2}{\partial x_2} & 0\\ 0 & \frac{\partial n_1}{\partial x_1} + \frac{\partial n_2}{\partial x_2} \end{bmatrix} \rightarrow f_1 = \frac{1}{2} (\operatorname{div} \boldsymbol{n})$$

Zoology of line defects Geometry of line defects Geometric phase

Nematoelasticity in a nutshell

• First term:

Zoology of line defects Geometry of line defects Geometric phase

Nematoelasticity in a nutshell

• First term:

Second term:

$$\frac{1}{2} \begin{bmatrix} 0 & \frac{\partial n_1}{\partial x_2} - \frac{\partial n_2}{\partial x_1} \\ -\frac{\partial n_1}{\partial x_2} + \frac{\partial n_2}{\partial x_1} & 0 \end{bmatrix} \rightarrow f_2 \simeq \frac{1}{2} (n.\text{curl } n)$$

Zoology of line defects Geometry of line defects Geometric phase

Nematoelasticity in a nutshell

• First term:

Second term:

« twist »

Zoology of line defects Geometry of line defects Geometric phase

Nematoelasticity in a nutshell

• Third term:

« bend »

$$\frac{1}{2} \begin{bmatrix} \frac{\partial n_1}{\partial x_1} - \frac{\partial n_2}{\partial x_2} & \frac{\partial n_1}{\partial x_2} + \frac{\partial n_2}{\partial x_1} \\ \frac{\partial n_1}{\partial x_2} + \frac{\partial n_2}{\partial x_1} & -\frac{\partial n_1}{\partial x_1} + \frac{\partial n_2}{\partial x_2} \end{bmatrix} \rightarrow f_3 \approx \frac{1}{2} (\mathbf{n} \wedge \mathbf{curl} \, \mathbf{n}) \quad \checkmark$$

Zoology of line defects Geometry of line defects Geometric phase

Nematoelasticity in a nutshell

• Third term:

« bend »

$$\frac{1}{2} \begin{bmatrix} \frac{\partial n_1}{\partial x_1} - \frac{\partial n_2}{\partial x_2} & \frac{\partial n_1}{\partial x_2} + \frac{\partial n_2}{\partial x_1} \\ \frac{\partial n_1}{\partial x_2} + \frac{\partial n_2}{\partial x_1} & -\frac{\partial n_1}{\partial x_1} + \frac{\partial n_2}{\partial x_2} \end{bmatrix} \rightarrow f_3 \approx \frac{1}{2} (\mathbf{n} \wedge \mathbf{curl} \, \mathbf{n}) \quad \checkmark$$

• Similarwise to the harmonic oscillator, the (simplest) Frank-Oseen free energy describing nematoelasticity writes as

$$F = \frac{1}{2}KX^{2} \simeq \frac{1}{2}K_{1}(\operatorname{div} n)^{2} + \frac{1}{2}K_{2}(n.\operatorname{curl} n)^{2} + \frac{1}{2}K_{3}(n \wedge \operatorname{curl} n)^{2}$$

Zoology of line defects Geometry of line defects Geometric phase

ev

∍ e,

Planar distorsions

• "One constant approximation" (isotropic elasticity) : $K_1 \sim K_2 \sim K_3 = K \sim \frac{E_0}{L}$

$$\Rightarrow F = \frac{K}{2} \left[\left(\operatorname{div} n \right)^2 + \left(n \operatorname{curl} n \right)^2 + \left(n \wedge \operatorname{curl} n \right)^2 \right] = \frac{K}{2} \left[\left(\operatorname{div} n \right)^2 + \left(\operatorname{curl} n \right)^2 \right]$$

• For planar configurations of the director field (x-y), tedious calculations give

$$\boldsymbol{n}(r,\theta) = \begin{pmatrix} \cos\psi(r,\theta) \\ \sin\psi(r,\theta) \\ 0 \end{pmatrix} \implies F = \frac{K}{2} (\operatorname{grad} \psi)^2$$

Euler-Lagrange equation for the Frank-Oseen energy then reduces to

$$\Delta \psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \psi}{\partial \theta^2} = 0$$

Sébastien Fumeron Topolog

Topological defects

Zoology of line defects Geometry of line defects Geometric phase

Planar distorsions

• One seeks simple solutions that are not depending on $r: \frac{d^2\psi}{d\theta^2} = 0 \Rightarrow r$

$$\frac{\psi}{\partial^2} = 0 \Rightarrow \psi(\theta) = m\theta + \psi_0$$

 \Rightarrow After a full turn about the z-axis, $\oint_{ heta=2\pi} d\psi = 2\pi m$

m = winding number (in \mathbb{R}) 2m = Frank index

Zoology of line defects Geometry of line defects Geometric phase

Planar distorsions

• One seeks simple solutions that are not depending on $r: \frac{d^2\psi}{d\theta^2} = 0 \Rightarrow \psi(\theta) = m\theta + \psi_0$

$$\Rightarrow$$
 After a full turn about the z-axis, $\oint_{ heta=2\pi} d\psi=2\pi m$

m = winding number (in \mathbb{R}) 2m = Frank index

• Constraints on *k* : the direction of *n* is well-defined at each point $\Rightarrow \oint_{\theta=2\pi} d\psi = 2\pi m = k\pi$ $k \in \mathbb{Z}$

(Z₂ symmetry of the nematic state)

$$\Rightarrow m = \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2...$$

Zoology of line defects Geometry of line defects Geometric phase

Planar distorsions

• One seeks simple solutions that are not depending on $r: \frac{d^2 \psi}{d\theta^2} = 0 \Rightarrow \psi(\theta) = m\theta + \psi_0$

$$\Rightarrow$$
 After a full turn about the z-axis, $\oint_{ heta=2\pi} d\psi = 2\pi m$

m = winding number (in \mathbb{R}) 2m = Frank index

• Constraints on *k* : the direction of *n* is well-defined at each point $\Rightarrow \oint_{\theta=2\pi} d\psi = 2\pi m = k\pi$ $k \in \mathbb{Z}$

(Z₂ symmetry of the nematic state)

$$\Rightarrow m = \pm \frac{1}{2}, \pm 1, \pm \frac{3}{2}, \pm 2...$$

• Free energy is now $F(r) = \frac{Km^2}{2r^2} \Rightarrow$ In practice, only distorsions of lower strengths are observed.

Zoology of line defects Geometry of line defects Geometric phase

Planar distorsions

• One seeks simple solutions that are not depending on $r: \frac{d^2 \psi}{d\theta^2} = 0 \Rightarrow \psi(\theta) = m\theta + \psi_0$

$$\Rightarrow$$
 After a full turn about the z-axis, $\ \oint_{ heta=2\pi} d\psi=2\pi m$

m = winding number (in \mathbb{R}) 2m = Frank index

• Constraints on *k* : the direction of *n* is well-defined at each point $\Rightarrow \oint_{\theta=2\pi} d\psi = 2\pi m = k\pi$ $k \in \mathbb{Z}$

(Z₂ symmetry of the nematic state)

$$\Rightarrow m = \pm \frac{1}{2}, \pm 1$$

• Free energy is now $F(r) = \frac{Km^2}{2r^2} \Rightarrow$ In practice, only distorsions of lower strengths are observed.

Zoology of line defects Geometry of line defects Geometric phase

Whole-numbered disclinations

▶ What does a distorted nematic locally look like ?

It depends on the parameters (m, ψ_0) . Let us learn a little more from several examples: $m = +1, \psi_0 = 0 \implies \mathbf{n}(\theta) = \begin{pmatrix} \cos \theta \\ \sin \theta \\ 0 \end{pmatrix} = \mathbf{e}_r$

Zoology of line defects Geometry of line defects Geometric phase

Whole-numbered disclinations

► What does a distorted nematic locally look like ?

It depends on the parameters (m, ψ_0) . Let us learn a little more from several examples: $\cos\theta$ $m = +1, \psi_0 = 0 \implies \boldsymbol{n}(\theta) = |\sin \theta| = \mathbf{e}_r$ 0 ex

Zoology of line defects Geometry of line defects Geometric phase

Whole-numbered disclinations

What does a distorted nematic locally look like ?

Zoology of line defects Geometry of line defects Geometric phase

Whole-numbered disclinations

What does a distorted nematic locally look like ?

Zoology of line defects Geometry of line defects Geometric phase

Whole-numbered disclinations

What does a distorted nematic locally look like ?

Sébastien Fumeron

Topological defects

ex

Zoology of line defects Geometry of line defects Geometric phase

Whole-numbered disclinations

What does a distorted nematic locally look like ?

Sébastien Fumeron Topological defects

Zoology of line defects Geometry of line defects Geometric phase

Whole-numbered disclinations

What does a distorted nematic locally look like ?

Sébastien Fumeron

Topological defects

Zoology of line defects Geometry of line defects Geometric phase

Whole-numbered disclinations

► What does a distorted nematic locally look like ?

Zoology of line defects Geometry of line defects Geometric phase

0

ex

Whole-numbered disclinations

What does a distorted nematic locally look like ?

Sébastien Fumeron **Topological defects**

Zoology of line defects Geometry of line defects Geometric phase

Whole-numbered disclinations

What does a distorted nematic locally look like ?

Sébastien Fumeron Topological defects

Zoology of line defects Geometry of line defects Geometric phase

Whole-numbered disclinations

▶ Is *m* the label of π_1 equivalence classes ?

Zoology of line defects Geometry of line defects Geometric phase

Whole-numbered disclinations

▶ Is *m* the label of π_1 equivalence classes ?

Zoology of line defects Geometry of line defects Geometric phase

Whole-numbered disclinations

▶ Is *m* the label of π_1 equivalence classes ?

The « magic trick » = escape in the third dimension !

Zoology of line defects Geometry of line defects Geometric phase

Whole-numbered disclinations

▶ Is *m* the label of π_1 equivalence classes ?

The « magic trick » = escape in the third dimension !

The homotopy loop can be shrunk to a point = **topologically removable defect**

Likewise for $m=-1 \Rightarrow$ Disclinations of integer strengths belong to the trivial homotopy class N=0.

Sébastien Fumeron Topological defects

Zoology of line defects Geometry of line defects Geometric phase

Moebius disclinations

Sébastien Fumeron

Topological defects

Zoology of line defects Geometry of line defects Geometric phase

Moebius disclinations

Zoology of line defects Geometry of line defects Geometric phase

Moebius disclinations

Zoology of line defects Geometry of line defects Geometric phase

Moebius disclinations

Zoology of line defects Geometry of line defects Geometric phase

Moebius disclinations

Zoology of line defects Geometry of line defects Geometric phase

Moebius disclinations

Zoology of line defects Geometry of line defects Geometric phase

Moebius disclinations

= no escape in the 3rd dimension = **topologically non-removable defect**.

Sébastien Fumeron

Zoology of line defects Geometry of line defects Geometric phase

Moebius disclinations

Zoology of line defects Geometry of line defects Geometric phase

Moebius disclinations

 $\pi_1(\mathbb{R}P^2)=Z_2=\{0,1\}$

Moebius ribbon

Zoology of line defects Geometry of line defects Geometric phase

Moebius disclinations

 $\pi_1(\mathbb{R}P^2)=Z_2=\{0,1\}$

Moebius ribbon

Zoology of line defects Geometry of line defects Geometric phase

Moebius disclinations

Moebius ribbon

Zoology of line defects Geometry of line defects Geometric phase

Moebius disclinations

 $\pi_1(\mathbb{R}P^2)=Z_2=\{0,1\}$

Moebius ribbon

Zoology of line defects Geometry of line defects Geometric phase

Moebius disclinations

 $\pi_1(\mathbb{R}P^2)=Z_2=\{0,1\}$

Moebius ribbon

Zoology of line defects Geometry of line defects Geometric phase

Moebius disclinations

AA Balinskii, GE Volovik, El Kats. Sov. Phys. JETP 60 (1984)

 $\Gamma_{1/2}$ and $\Gamma_{-1/2}$ are topologically equivalent.

 \Rightarrow Disclinations of half-integer strengths belong to the same homotopy class N= 1

Zoology of line defects Geometry of line defects Geometric phase

Solution to the riddle

 \Rightarrow Although *m* is called the « topological charge » of the defect, it is the absolute value of *m* that matters for topology.

$$N = 1 - E\left(\left|m\right|\right)$$

Zoology of line defects Geometry of line defects Geometric phase

Solution to the riddle

 \Rightarrow Although *m* is called the « topological charge » of the defect, it is the absolute value of *m* that matters for topology.

$$N = 1 - E\left(\left|m\right|\right)$$

• Polarising microscopy reveals « Schlieren patterns », which depend on this topological invariant, as the number of dark brushes $= 4 \times |m|$.

 $m = \pm 1/2$

$$m = \pm 1$$

Zoology of line defects Geometry of line defects Geometric phase

Solution to the riddle

 \Rightarrow Although *m* is called the « topological charge » of the defect, it is the absolute value of *m* that matters for topology.

$$N = 1 - E\left(\left|m\right|\right)$$

• Polarising microscopy reveals « Schlieren patterns », which depend on this topological invariant, as the number of dark brushes $= 4 \times |m|$.

$$m = \pm 1$$

Zoology of line defects Geometry of line defects Geometric phase

Algebra of linear defects

S Chandrasekhar. Liquid crystals (1984)

1+1=0

• The set is the quotient group $\mathbb{Z} / 2\mathbb{Z} = \{0,1\}$ with a law of addition +.

0+1=1

Analogously to electrostatics, defects of opposite charges attract each other (repell otherwise):

Fig. 3.5.3. Curves of equal alignment around a pair of singularities of equal and opposite strengths. The orientations marked on the circles refer to the case s = 1, c = 0.

Sébastien Fumeron

Zoology of line defects Geometry of line defects Geometric phase

Algebra of linear defects

S Chandrasekhar. Liquid crystals (1984)

1+1=0

• The set is the quotient group $\mathbb{Z} / 2\mathbb{Z} = \{0,1\}$ with a law of addition +.

0+1=1

Analogously to electrostatics, defects of opposite charges attract each other (repell otherwise):

Fig. 3.5.3. Curves of equal alignment around a pair of singularities of equal and opposite strengths. The orientations marked on the circles refer to the case s = 1, c = 0.

Sébastien Fumeron

Zoology of line defects Geometry of line defects Geometric phase

Algebra of linear defects

S Chandrasekhar. Liquid crystals (1984)

1+1=0

• The set is the quotient group $\mathbb{Z} / 2\mathbb{Z} = \{0,1\}$ with a law of addition +.

0+1=1

Analogously to electrostatics, defects of opposite charges attract each other (repell otherwise):

Fig. 3.5.3. Curves of equal alignment around a pair of singularities of equal and opposite strengths. The orientations marked on the circles refer to the case s = 1, c = 0.

Sébastien Fumeron

Zoology of line defects Geometry of line defects Geometric phase

Algebra of linear defects

C Zhang. PhD thesis. Carnegie Mellon university (2017)

• The set is the quotient group $\mathbb{Z} / 2\mathbb{Z} = \{0,1\}$ with a law of addition +.

Zoology of line defects Geometry of line defects Geometric phase

Algebra of linear defects

C Zhang. PhD thesis. Carnegie Mellon university (2017)

• The set is the quotient group $\mathbb{Z} / 2\mathbb{Z} = \{0,1\}$ with a law of addition +.

0+0=0

Zoology of line defects Geometry of line defects Geometric phase

Algebra of linear defects

0+0=0

C Zhang. PhD thesis. Carnegie Mellon university (2017)

1+1=

• The set is the quotient group $\mathbb{Z} / 2\mathbb{Z} = \{0,1\}$ with a law of addition +.

Zoology of line defects Geometry of line defects Geometric phase

Algebra of linear defects

C Zhang. PhD thesis. Carnegie Mellon university (2017)

1+1=

• The set is the quotient group $\mathbb{Z} / 2\mathbb{Z} = \{0,1\}$ with a law of addition +.

Zoology of line defects Geometry of line defects Geometric phase

Algebra of linear defects

0+0=0

C Zhang. PhD thesis. Carnegie Mellon university (2017)

1+1=0

• The set is the quotient group $\mathbb{Z} / 2\mathbb{Z} = \{0,1\}$ with a law of addition +.

Zoology of line defects Geometry of line defects Geometric phase

Algebra of linear defects

C Zhang. PhD thesis. Carnegie Mellon university (2017)

• The set is the quotient group $\mathbb{Z} / 2\mathbb{Z} = \{0,1\}$ with a law of addition +.

Zoology of line defects Geometry of line defects Geometric phase

Other topological numbers

▶ Is |m| enough to characterize the topology of a line defect ?

Locally yes, but globally no, as a line defect can self-connect, entangle with itself (« nematic braids ») or more...

To go further: self-linking number, Jänich's index, Poincaré-Hopf's index...

Zoology of line defects Geometry of line defects Geometric phase

Fermat-Grandjean principle (1919)

• Extraordinary light paths obey a least action principle

$$\delta\left[\int_{A}^{B} N_{e}(\boldsymbol{r}) dl\right] = 0 = \delta\left[\int_{A}^{B} \sqrt{\varepsilon_{\perp} \cos^{2} \beta(\boldsymbol{r}) + \varepsilon_{\parallel} \sin^{2} \beta(\boldsymbol{r})} dl\right]$$

Zoology of line defects Geometry of line defects Geometric phase

Fermat-Grandjean principle (1919)

C Satiro, F Moraes. EPJ E 20 (2006)

• Extraordinary light paths obey a least action principle

$$\delta\left[\int_{A}^{B} N_{e}(\boldsymbol{r}) dl\right] = 0 = \delta\left[\int_{A}^{B} \sqrt{\varepsilon_{\perp} \cos^{2}\beta(\boldsymbol{r}) + \varepsilon_{\parallel} \sin^{2}\beta(\boldsymbol{r})} dl\right]$$

Zoology of line defects Geometry of line defects Geometric phase

Fermat-Grandjean principle (1919)

• Extraordinary light paths obey a least action principle

$$\delta\left[\int_{A}^{B} N_{e}(\boldsymbol{r}) dl\right] = 0 = \delta\left[\int_{A}^{B} \sqrt{\varepsilon_{\perp} \cos^{2}\beta(\boldsymbol{r}) + \varepsilon_{\parallel} \sin^{2}\beta(\boldsymbol{r})} dl\right]$$

Curved path in a Euclidean space

Zoology of line defects Geometry of line defects Geometric phase

Fermat-Grandjean principle (1919)

• Extraordinary light paths obey a least action principle

$$\delta\left[\int_{A}^{B} N_{e}(\boldsymbol{r}) dl\right] = 0 = \delta\left[\int_{A}^{B} \sqrt{\varepsilon_{\perp} \cos^{2} \beta(\boldsymbol{r}) + \varepsilon_{\parallel} \sin^{2} \beta(\boldsymbol{r})} dl\right]$$

Curved path in a Euclidean space

« Straight path » in a curved space

Zoology of line defects Geometry of line defects Geometric phase

 $x^2 = -1$

 $x^2 = 1$

 $x^2 = 0$

 $x^{1} = 0$

Reminder of Riemann geometry

- ► How to describe a curved geometry ?
 - A **n-manifold** = smooth hypersurface that locally « looks like » \mathbb{R}^n
 - coordinate system x^{μ}
 - coordinate basis ∂_{μ}
 - A metric structure to measure lengths

$$g_{\mu\nu} = \partial_{\mu} \partial_{\nu} \qquad ds^{2} = d\mathbf{x} d\mathbf{x} = (dx^{\mu} \partial_{\mu}) \cdot (dx^{\nu} \partial_{\nu}) \qquad \text{Generalized} \\ = dx^{\mu} dx^{\nu} g_{\mu\nu} \qquad \text{Pythagoras' theorem}$$

• A connection to perform covariant differentiation... $\nabla_{\alpha}V^{\mu} = \partial_{\alpha}V^{\mu} + \Gamma^{\mu}_{\alpha\nu}V^{\nu}$

 $(dx^{\nu}\partial_{\nu})$ Generalized

and and

 ∂_1

Zoology of line defects Geometry of line defects Geometric phase

Reminder of Riemann geometry

... and to *parallel-transport* vectors, tensors, spinors ...

$$\frac{DT^{\mu}}{d\lambda} = \frac{dx^{\alpha}}{d\lambda} \nabla_{\alpha} T^{\mu}_{\nu} = 0$$

$$= \frac{dT^{\mu}}{d\lambda} + \Gamma^{\mu}_{\alpha\beta} T^{\beta}_{\nu}_{\nu} \frac{dx^{\alpha}}{d\lambda} + \dots - \Gamma^{\beta}_{\alpha\nu} T^{\mu}_{\beta}_{\beta} \frac{dx^{\alpha}}{d\lambda} - \dots$$

Zoology of line defects Geometry of line defects Geometric phase

Reminder of Riemann geometry

... and to parallel-transport vectors, tensors, spinors ...

$$\frac{DT^{\mu..}}{d\lambda} = \frac{dx^{\alpha}}{d\lambda} \nabla_{\alpha} T^{\mu..}_{\nu..} = 0$$

$$= \frac{dT^{\mu..}}{d\lambda} + \Gamma^{\mu}_{\alpha\beta} T^{\beta..}_{\nu..} \frac{dx^{\alpha}}{d\lambda} + \dots - \Gamma^{\beta}_{\alpha\nu} T^{\mu..}_{\beta..} \frac{dx^{\alpha}}{d\lambda} - \dots$$

Searching for the North pole

 Parallel transport can be used to define a special class of curves, the geodesics, which are the curved-geometry generalizations of the Euclidean notion of straight lines. A geodesic curve is one that parallel-transports its own tangent vector (= autoparallel curve):

$$\frac{D}{d\lambda} \left(\frac{dx^{\mu}}{d\lambda} \right) = 0 = \frac{dx^{\alpha}}{d\lambda} \left(\frac{\partial}{\partial x^{\alpha}} \left[\frac{dx^{\mu}}{d\lambda} \right] + \Gamma^{\mu}_{\alpha\nu} \frac{dx^{\nu}}{d\lambda} \right) \implies 0 = \frac{d^2 x^{\alpha}}{d\lambda^2} + \Gamma^{\mu}_{\alpha\nu} \frac{dx^{\nu}}{d\lambda} \frac{dx^{\alpha}}{d\lambda}$$

 \leftrightarrow Newton's 2nd law

Sébastien Fumeron

Zoology of line defects Geometry of line defects Geometric phase

Reminder of Riemann geometry

• But most importantly, geodesics are the curves of extremal lengths (cf. Fermat-Grandjean principe). <u>A warning</u>: in the presence of curvature, actual geodesics may be very counter-intuitive:

Shortest path between Calgary and Warsaw (flight plan)

Zoology of line defects Geometry of line defects Geometric phase

Transformation optics

U Leonhardt,TG. Philbin. Progress in Optics 53 (2009) H Chen et al. Nature materials, 9 (2010)

Light path inside matter in Euclidean space

$$ds_{2D}^2 = N_e^2(\mathbf{r})dl^2$$

Geodesic in vacuum in curved space

$$ds_{2D}^2 = g_{ij}dx^i dx^j$$

⇒ How to find the metric tensor representing a defective liquid crystal ?

Zoology of line defects Geometry of line defects Geometric phase

Recipe for the line element

1. Express the tangent vector T (planar path)

$$\boldsymbol{r} = r\cos\theta\boldsymbol{e}_{x} + r\sin\theta\boldsymbol{e}_{y}$$
$$\boldsymbol{T} = \frac{d\boldsymbol{r}}{dl} = \left(\dot{r}\cos\theta - r\dot{\theta}\sin\theta\right)\boldsymbol{e}_{x} + \left(\dot{r}\sin\theta + r\dot{\theta}\cos\theta\right)\boldsymbol{e}_{y}$$

2. Write the components of the director field $\mathbf{n} = \cos \psi \mathbf{e}_x + \sin \psi \mathbf{e}_x$

$$\Rightarrow \cos \beta = \mathbf{n} \cdot \mathbf{T} = \dot{r} \cos(\psi - \theta) + r\dot{\theta} \sin(\psi - \theta)$$
$$\sin \beta = \|\mathbf{n} \times \mathbf{T}\| = -\dot{r} \sin(\psi - \theta) + r\dot{\theta} \cos(\psi - \theta)$$

3. Replace in the Fermat-Grandjean line element and see the magic

$$N_e^2(\boldsymbol{r})dl^2 = \left(\varepsilon_{\perp}\cos^2\beta(\boldsymbol{r}) + \varepsilon_{\parallel}\sin^2\beta(\boldsymbol{r})\right)dl^2$$

Zoology of line defects Geometry of line defects Geometric phase

Recipe for the line element

• To spare repelling calculations, one sticks to m = 1, $\psi_0 = 0$, but the proof is in the same fashion for the general case.

$$\Rightarrow \cos \beta = \dot{r} \cos (\psi - \theta) + r\dot{\theta} \sin (\psi - \theta) = \dot{r}$$
$$\sin \beta = -\dot{r} \sin (\psi - \theta) + r\dot{\theta} \cos (\psi - \theta) = r\dot{\theta}$$

$$\Rightarrow ds_{2D}^{2} = N_{e}^{2}(\mathbf{r})dl^{2} = \left(\varepsilon_{\perp}\dot{r}^{2} + \varepsilon_{\parallel}r^{2}\dot{\theta}^{2}\right)dl^{2} = \left(\varepsilon_{\perp}\left[\frac{dr}{dl}\right]^{2} + \varepsilon_{\parallel}r^{2}\left[\frac{d\theta}{dl}\right]^{2}\right)dl^{2} = \varepsilon_{\perp}dr^{2} + \varepsilon_{\parallel}r^{2}d\theta^{2}$$

A simple rescaling on the radial coordinate finally leads to

$$ds_{2D}^2 = d\rho^2 + \alpha^2 \rho^2 d\theta^2$$
Zoology of line defects Geometry of line defects Geometric phase

Recipe for the line element

• To spare repelling calculations, one sticks to m = 1, $\psi_0 = 0$, but the proof is in the same fashion for the general case.

$$\Rightarrow \cos \beta = \dot{r} \cos (\psi - \theta) + r\dot{\theta} \sin (\psi - \theta) = \dot{r}$$
$$\sin \beta = -\dot{r} \sin (\psi - \theta) + r\dot{\theta} \cos (\psi - \theta) = r\dot{\theta}$$

$$\Rightarrow ds_{2D}^{2} = N_{e}^{2}(\mathbf{r})dl^{2} = \left(\varepsilon_{\perp}\dot{r}^{2} + \varepsilon_{\parallel}r^{2}\dot{\theta}^{2}\right)dl^{2} = \left(\varepsilon_{\perp}\left[\frac{dr}{dl}\right]^{2} + \varepsilon_{\parallel}r^{2}\left[\frac{d\theta}{dl}\right]^{2}\right)dl^{2} = \varepsilon_{\perp}dr^{2} + \varepsilon_{\parallel}r^{2}d\theta^{2}$$

A simple rescaling on the radial coordinate finally leads to

$$ds_{3D}^2 = d\rho^2 + \alpha^2 \rho^2 d\theta^2 + dz^2$$

⇒ What kind of geometry does this represent?

Zoology of line defects Geometry of line defects Geometric phase

What a wedge cut does to space

• Ricci curvature scalar:
$$R(\rho) = \frac{(1-\alpha)}{\alpha\rho} \delta(\rho)$$
 = flat everywhere but on the z-axis.

For a circle of unit radius about the z-axis, the perimeter is given by $p = \oint_{\alpha=1} ds_{3D} = \alpha \oint d\theta = 2\pi \alpha$

 \Rightarrow « conical » geometry

Zoology of line defects Geometry of line defects Geometric phase

What a wedge cut does to space

• Ricci curvature scalar:
$$R(\rho) = \frac{(1-\alpha)}{\alpha\rho} \delta(\rho)$$
 = flat everywhere but on the z-axis.

For a circle of unit radius about the z-axis, the perimeter is given by $p = \oint_{D=1} ds_{3D} = \alpha \oint d\theta = 2\pi \alpha$

\Rightarrow « conical » geometry

• Volterra process for a deficit-angle or wedge disclination:

Zoology of line defects Geometry of line defects Geometric phase

Just for fun...

• The general line element for a straight disclination of any topological charge is

$$ds_{3D}^{2} = \left(\varepsilon_{\perp}\cos^{2}\left[\left(m-1\right)\theta+\psi_{0}\right]+\varepsilon_{\parallel}\sin^{2}\left[\left(m-1\right)\theta+\psi_{0}\right]\right)dr^{2} + \left(\varepsilon_{\perp}\sin^{2}\left[\left(m-1\right)\theta+\psi_{0}\right]+\varepsilon_{\parallel}\cos^{2}\left[\left(m-1\right)\theta+\psi_{0}\right]\right)r^{2}d\theta^{2} - \left(\varepsilon_{\parallel}-\varepsilon_{\perp}\right)\sin\left[2\left(m-1\right)\theta+2\psi_{0}\right]rdrd\theta+dz^{2}$$

What should be done next involves computing the connection coefficients, the Riemann curvature tensor...

Zoology of line defects Geometry of line defects Geometric phase

Distribution of defects

S Fumeron et al. Eur. Phys. J. B 90 (2017)

• In real-life, defects are not isolated. Sometimes, it is possible to find analytical expressions for the line element:

Discrete distribution of disclinations $ds^2 = -c^2 dt^2 + e^{-4V(x,y)} \left(dx^2 + dy^2 \right) + dz^2$ $V(x,y) = \frac{|F|}{4\pi} \ln \left[\left(\frac{\cosh^2 \left(\frac{\pi}{2a} (y-b) \right) - \cos^2 \left(\frac{\pi x}{2a} \right)}{\cosh^2 \left(\frac{\pi}{2a} (y-b) \right) - \sin^2 \left(\frac{\pi x}{2a} \right)} \right) \left(\frac{\cosh^2 \left(\frac{\pi}{2a} (y+b) \right) - \sin^2 \left(\frac{\pi x}{2a} \right)}{\cosh^2 \left(\frac{\pi}{2a} (y+b) \right) - \cos^2 \left(\frac{\pi x}{2a} \right)} \right) \right]$

Zoology of line defects Geometry of line defects Geometric phase

Distribution of defects

S Fumeron et al. Eur. Phys. J. B 90 (2017)

• In real-life, defects are not isolated. Sometimes, it is possible to find analytical expressions for the line element:

Discrete distribution of disclinations $ds^2 = -c^2 dt^2 + e^{-4V(x,y)} \left(dx^2 + dy^2 \right) + dz^2$ $V(x,y) = \frac{|F|}{4\pi} \ln \left[\left(\frac{\cosh^2 \left(\frac{\pi}{2a} (y-b) \right) - \cos^2 \left(\frac{\pi x}{2a} \right)}{\cosh^2 \left(\frac{\pi}{2a} (y-b) \right) - \sin^2 \left(\frac{\pi x}{2a} \right)} \right) \left(\frac{\cosh^2 \left(\frac{\pi}{2a} (y+b) \right) - \sin^2 \left(\frac{\pi x}{2a} \right)}{\cosh^2 \left(\frac{\pi}{2a} (y+b) \right) - \cos^2 \left(\frac{\pi x}{2a} \right)} \right) \right]$

Zoology of line defects Geometry of line defects Geometric phase

Holonomy: intuitive approach

• Let us go back to « lost traveller problem »: after a closed loop, a parallel-transported vector fails to

Searching for the North pole

recover its initial direction: this is called (an)holonomy. How to understand that ?

$$\Rightarrow$$
 Girard's formula $\Sigma = R^2 \Omega = R^2 \left(\hat{A} + \hat{B} + \hat{C} - \pi \right)$

Here, this simplifies into $F\Sigma = \hat{C}$, which also turns out to be \hat{h} , the mismatch angle.

Hence, the mismatch angle is a measure of the Gaussian curvature F of the surface Σ bounded by the closed circuit.

This result is an basic outcome of the **Ambrose-Singer theorem**: for a given connection on a vector bundle, the curvature corresponds to the surface density of holonomy.

Zoology of line defects Geometry of line defects Geometric phase

Holonomy: intuitive approach

• But the Gaussian curvature *F* is also related to the topology of the surface:

Gauss-Bonnet theorem

$$\Rightarrow \hat{h} = 2\pi \chi - \oint_{\partial \Sigma} \kappa_g ds$$

Therefore, holonomy is also connected to topology.

Sébastien Fumeron

Zoology of line defects Geometry of line defects Geometric phase

Holonomy: formal approach

- More generally, one defines **holonomy** as the failure to transport any information (such as the orientation of a vector) on a closed circuit on a curved surface Σ .
- Let there be a path parametrized by λ along which a vector V is parallel-transported. The *parallel propagator* Π is defined as

 $V^{\mu}(\lambda) = \Pi^{\mu}_{\rho}(\lambda) V^{\rho}(0)$

But the transport parallel condition also writes as: $\frac{DV^{\nu}}{d\lambda} = 0 \Rightarrow \frac{dV^{\nu}}{d\lambda} = -\Gamma^{\nu}_{\sigma\mu} \frac{dx^{\sigma}}{d\lambda} V^{\mu} = A^{\nu}_{\mu} V^{\mu}$

Therefore the parallel propagator obeys

$$\frac{d}{d\lambda}\Pi^{\nu}{}_{\rho}(\lambda)V^{\rho}(0) = A^{\nu}{}_{\mu}(\lambda)\Pi^{\mu}{}_{\rho}(\lambda)V^{\rho}(0) \quad \Rightarrow \quad \frac{d}{d\lambda}\Pi^{\nu}{}_{\rho}(\lambda) = A^{\nu}{}_{\mu}(\lambda)\Pi^{\mu}{}_{\rho}(\lambda)$$

Topological defects

S Carroll. Spacetime and geometry (2003)

E Cartan

Zoology of line defects Geometry of line defects Geometric phase

Holonomy: formal approach

S Carroll. Spacetime and geometry (2003)

• This differential equation formally integrates as
$$\Pi^{\mu}_{\ \rho}(\lambda) = \delta^{\mu}_{\ \rho} + \int_{0}^{\lambda} A^{\mu}_{\ \sigma}(\eta) \Pi^{\sigma}_{\ \rho}(\eta) d\eta$$

Similarly to what is done when establishing Dyson's formula (QFT), one iterates the process:

$$\Pi^{\mu}_{\ \rho} \left(\lambda \right) = \delta^{\mu}_{\ \rho} + \int_{0}^{\lambda} A^{\mu}_{\ \rho} \left(\eta \right) d\eta + \int_{\eta_{2}=0}^{\lambda} \int_{\eta_{1}=0}^{\eta_{2}} A^{\mu}_{\ \sigma} \left(\eta_{2} \right) A^{\sigma}_{\ \rho} \left(\eta_{1} \right) d\eta_{1} d\eta_{2} + \dots$$
$$+ \int_{\eta_{3}=0}^{\lambda} \int_{\eta_{2}=0}^{\eta_{3}} \int_{\eta_{1}=0}^{\eta_{2}} A^{\mu}_{\ \sigma} \left(\eta_{3} \right) A^{\sigma}_{\ \nu} \left(\eta_{2} \right) A^{\nu}_{\ \rho} \left(\eta_{2} \right) d\eta_{1} d\eta_{2} d\eta_{3} + \dots$$

- How to simplify this unpleasant formula ?
 - ⇒ Instead of integrating over *n*-simplices, one integrates over *n*-cubes while keeping the product in the right order

$$\int_{\eta_{n}=0}^{\lambda} \int_{\eta_{n-1}=0}^{\eta_{n}} \dots \int_{\eta_{1}=0}^{\eta_{2}} A(\eta_{n}) A(\eta_{n-1}) \dots A(\eta_{1}) d^{n} \eta = \frac{1}{n!} \int_{\eta_{n}=0}^{\lambda} \int_{\eta_{n-1}=0}^{\lambda} \dots \int_{\eta_{1}=0}^{\lambda} P[A(\eta_{n}) A(\eta_{n-1}) \dots A(\eta_{1})] d^{n} \eta$$

Zoology of line defects Geometry of line defects Geometric phase

Holonomy: formal approach

S Carroll. Spacetime and geometry (2003)

• Thanks to Taylor's expansion series, the previous formula « miraculously » simplifies into

$$\Pi(\lambda) = I + \sum_{n=1}^{+\infty} \frac{1}{n!} \int_{\eta_n=0}^{\lambda} \int_{\eta_n=0}^{\lambda} \dots \int_{\eta_1=0}^{\lambda} P[A(\eta_n)A(\eta_{n-1})\dots A(\eta_1)] d^n \eta = P \exp \int_{0}^{\lambda} A(\eta) d\eta$$

with P is the ordering operator. On a loop γ about a point M, the holonomy writes explicitly as

$$\Pi^{\mu}_{\nu}[\gamma] = \mathbf{P} \exp\left(-\oint_{\gamma(M)} \Gamma^{\mu}_{\sigma\nu} \frac{dx^{\sigma}}{d\eta} d\eta\right) \Leftrightarrow \Pi[\gamma] = \mathbf{P} \exp\left(-\oint_{\gamma(M)} \Gamma_{\sigma} dx^{\sigma}\right)$$

 Ambrose-Singer theorem = to know the holonomy at every point of the manifold is equivalent to know the curvature at every point of the manifold ↔ quantum loop gravity.

Zoology of line defects Geometry of line defects Geometric phase

Holonomy due to a disclination

AM de Carvalho, C Satiro, F Moraes. EPL 80 (2007)

• For a loop about the origin in a z=Cst plane, only the polar connection symbol is retained

$$\Pi[\gamma] = \operatorname{Pexp}\left(-\oint_{\gamma(M)} \Gamma_{\theta} d\theta\right)$$
$$\Gamma_{\theta} = \frac{m}{\alpha} \left(\alpha^{2} \cos^{2}\left[(m-1)\theta + \psi_{0}\right] + \sin^{2}\left[(m-1)\theta + \psi_{0}\right]\right) \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}$$

• For $ds_{2D}^2 = d\rho^2 + \alpha^2 \rho^2 d\theta^2$, one gets $\Gamma_{\theta} = \alpha \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and a Taylor expansion of the parallel propagator gives: $\Pi[\chi] = \begin{bmatrix} \cos(2\pi\alpha) & -\sin(2\pi\alpha) \end{bmatrix}$

$$\Pi[\gamma] = \begin{bmatrix} \cos(2\pi\alpha) & -\sin(2\pi\alpha) \\ \sin(2\pi\alpha) & \cos(2\pi\alpha) \end{bmatrix}$$

Disclination \Leftrightarrow **Active rotation** = when acting on a vector, causes its counterclockwise rotation.

Zoology of line defects Geometry of line defects Geometric phase

Holonomy due to a disclination

AM de Carvalho, C Satiro, F Moraes. EPL 80 (2007)

► How much does a vector turn when describing a loop around the defect ?

Zoology of line defects Geometry of line defects Geometric phase

Comparison with Aharonov-Bohm

M Berry

« The Aharonov-Bohm effect is real physics not ideal physics ».

Aharonov-Bohm phase

Magnetic flux is confined within the solenoid, it vanishes everywhere else.

It has measurable effects: shift of the electronic interference pattern...

Quantum

SQUID

Moraes phase

Curvature is confined within the disclination line, it vanishes everywhere else.

It has measurable effects: rotation of polarization plane of linearly polarized light...

Classical

Still waiting for its NDC device...

Sébastien Fumeron

Zoology of line defects Geometry of line defects Geometric phase

A tentative definition

E Cohen et al. Nature Reviews 1 (2019)

Phase	First appeared in	Mostly known in	Parameter space	Topological	Adiabatic
Pancharatnam	1956	Optics	Poincaré sphere	No	Yes
Aharonov- Bohm	1959	Quantum electrodynamics	Spacetime	Yes	No
Exchange statistics (of Abelian anyons)	1977 1982 1984	Condensed matter	Real space	Yes	Yes
Berry	1983 1984	Quantum mechanics	General	No	Yes
Aharonov- Casher	1984	Quantum electrodynamics	Real space	Yes	No
Hannay angle	1985	Classical mechanics	Real space	No	Yes
Aharonov- Anandan	1987	Quantum mechanics	General	Yes	No
Zak	1989	Condensed matter	Momentum space	No	No

They are all examples of what is generically called *geometric* or *Berry phases*, that is « **phases are not attributed to the forces applied onto the [quantum] system. Instead, they are associated with the connection of space itself.** »

Zoology of line defects Geometry of line defects Geometric phase

Next lecture...

Sébastien Fumeron

Zoology of line defects Geometry of line defects Geometric phase

Bibliography

Maurice Kleman Oleg D. Lavrentovich

Zoology of line defects Geometry of line defects Geometric phase

Appendices

Zoology of line defects Geometry of line defects Geometric phase

Disclination gallery

s = 3/2

Sébastien Fumeron

Topological defects

s=2

Zoology of line defects Geometry of line defects Geometric phase

Escape in the third dimension

Sébastien Fumeron

Zoology of line defects Geometry of line defects Geometric phase

Escape in the third dimension

O Lavrentovich. Kent state University

Zoology of line defects Geometry of line defects Geometric phase

Twisting things around

• Line defects can also have a chirality. For instance in crystalline solids, a very common chiral defect is the screw dislocation:

TEM image in CaCO₃

Zoology of line defects Geometry of line defects Geometric phase

Twisting things around

• Line defects can also have a chirality. For instance in crystalline solids, a very common chiral defect is the screw dislocation:

Zoology of line defects Geometry of line defects Geometric phase

Twisting things around

Line defects can also have a chirality. For instance in crystalline solids, a very common chiral defect is the screw dislocation:

TEM image in CaCO₃

A « giant screw dislocation » in Da Vinci's spiral stairway (Chambord)

Zoology of line defects Geometry of line defects Geometric phase

Twisting things around

• Line defects can also have a chirality. For instance in crystalline solids, a very common chiral defect is the screw dislocation:

• The defect couples the rotation and translation around the z-axis: $\theta \rightarrow \theta + 2\pi \Leftrightarrow z \rightarrow z + 2\pi\beta$ The sign of β dictates if the helix is left-handed of right-handed.

Zoology of line defects Geometry of line defects Geometric phase

Twisting things around

• Volterra process for the screw dislocation:

Zoology of line defects Geometry of line defects Geometric phase

Twisting things around

• Volterra process for the screw dislocation:

In mesophases as well, chiral line defects have been observed:

POM image in a smectic (C. Blanc, Montpellier 2)

Zoology of line defects Geometry of line defects Geometric phase

Twisting things around

• The geometry of a single twisted disclination (or dispiration) is given by the line element:

$$ds_{3D}^{2} = dr^{2} + \alpha^{2}r^{2}d\theta^{2} + (\beta d\theta + dz)^{2}$$

- Differential geometry of a dispiration is much harder than it may look at first sight:
 - 1. Distributional non-vanishing curvature on the z-axis:

$$R(r) = \frac{(1-\alpha)}{\alpha r} \delta(r)$$

V₄ = Riemann geometry

2. Distributional non-vanishing torsion on the z-axis:

$$T^{z} = 2\pi\beta \frac{\delta(r)}{r} dr \wedge d\theta$$

U₄ = Riemann-Cartan geometry

Zoology of line defects Geometry of line defects Geometric phase

Distribution of defects

S Fumeron et al. Eur. Phys. J. B 90 (2017) MO Katanaev et al.. Annals of Physics (1999)

- In real-life, defects are not isolated. Sometimes, it is possible to find analytical expressions for the line element:
 - 1. Discrete distribution of disclinations: $ds^2 = -c^2 dt^2 + e^{-4V(x,y)} (dx^2 + dy^2) + dz^2$

$$V(x,y) = \frac{|F|}{4\pi} \ln\left[\left(\frac{\cosh^2\left(\frac{\pi}{2a}(y-b)\right) - \cos^2\left(\frac{\pi x}{2a}\right)}{\cosh^2\left(\frac{\pi}{2a}(y-b)\right) - \sin^2\left(\frac{\pi x}{2a}\right)}\right) \left(\frac{\cosh^2\left(\frac{\pi}{2a}(y+b)\right) - \sin^2\left(\frac{\pi x}{2a}\right)}{\cosh^2\left(\frac{\pi}{2a}(y+b)\right) - \cos^2\left(\frac{\pi x}{2a}\right)}\right)\right]$$

2. Continuous distribution of dislocations: $ds_{3D}^2 = dr^2 + r^2 d\theta^2 + (\Omega r^2 d\theta + dz)^2$

 $\Omega = Nb/2$ Surface density of Burgers vector

Zoology of line defects Geometry of line defects Geometric phase

Distribution of defects

S Fumeron et al. Eur. Phys. J. B 90 (2017) MO Katanaev et al.. Annals of Physics (1999)

- In real-life, defects are not isolated. Sometimes, it is possible to find analytical expressions for the line element:
 - 1. Discrete distribution of disclinations: $ds^2 = -c^2 dt^2 + e^{-4V(x,y)} (dx^2 + dy^2) + dz^2$

$$V(x,y) = \frac{|F|}{4\pi} \ln\left[\left(\frac{\cosh^2\left(\frac{\pi}{2a}(y-b)\right) - \cos^2\left(\frac{\pi x}{2a}\right)}{\cosh^2\left(\frac{\pi}{2a}(y-b)\right) - \sin^2\left(\frac{\pi x}{2a}\right)}\right) \left(\frac{\cosh^2\left(\frac{\pi}{2a}(y+b)\right) - \sin^2\left(\frac{\pi x}{2a}\right)}{\cosh^2\left(\frac{\pi}{2a}(y+b)\right) - \cos^2\left(\frac{\pi x}{2a}\right)}\right)\right]$$

2. Continuous distribution of dislocations:
$$ds_{3D}^2 = dr^2 + r^2 d\theta^2 + \left(\Omega r^2 d\theta + dz\right)^2$$

 $\Omega = Nb/2$ Surface density of Burgers vector

3. Continuous distribution of chiral disclinations (r>R):

$$ds_{3D}^{2} = dr^{2} + r^{2(A-1)}d\theta^{2} + \left(\Omega r^{2}d\theta + dz\right)^{2} \qquad A = 1 + qR^{2}/2 \qquad Surface \ density of \ deficit \ angle$$