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Introduction to topological defects

Liquid crystals, active matter and more…

Sébastien Fumeron
Thematic School

New trends in condensed matter
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Introduction
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Crystalline solids

They are rigid

Isotropic fluids  

Metals and

superconductors

Insulators
Liquids

Superfluids

They can flow

Sand ?

Gel (agar-agar) ?

Condensed matter

Introduction
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« Soft matter »

PG De Gennes

• media with « large response functions » (PG De Gennes).

• « materials that will not hurt your hand if you hit them » (T

Lubensky) = viscoelastic materials, i.e. media that exhibit

properties of both solids (they deform elastically) and liquids

(they flow).

• « an amalgamation of methods and concepts » from «

physics, chemistry, engineering, biology, materials, and

mathematics departments. The problems that soft

matter…examines are the interdisciplinary offspring that

emerge from these otherwise distinct fields » (J Silverberg).

The term was coined by Pierre-Gilles de Gennes in the title of his 1991 Nobel Prize conference. Soft

condensed matter is defined as:

Introduction
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condensed matter is defined as:

Introduction

Examples: colloids (emulsions, foams, paints, aerosols, gels and glues), granular media, liquid crystals…

Many open problems: active matter, glass transition, flows of granular materials, sonoluminescence…
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▪ The nematic mesophase

▪ Topology and phase transitions 

Part 1: A crash course on liquid crystals

▪ Half and whole-integer disclinations 

▪ Differential geometry

▪ Geometric phases

Part 2: Topological defects in nematics

Part 3: Topological defects everywhere ?

Overview of the lectures

▪ Biology

▪ Cosmology

Introduction
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Part I. A crash course on liquid crystals
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A story of carrot and stick

F Reinitzer

The nematic phase

Phase transitions in LC

Introduction to homotopy

In 1888, botanist Friedrich Reinitzer studied crystals of cholesteryl benzoate from carrots and

observed that they have two melting points. When reaching T=145°C, crystals melt and turn into a

milky fluid. When reaching T=179°C, it changes again into a clear liquid.

0°C 145°C 179°C

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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A story of carrot and stick

F Reinitzer O Lehmann

The nematic phase

Phase transitions in LC

Introduction to homotopy

Reinitzer asked physicist Otto Lehmann about his observations. With the help of a polarizing

microscope, Lehmann noted in 1890 that the cloudy phase flowed like a liquid, but also had a stick-like

molecular structure that was somewhat ordered as in solid crystals. He coined the term “liquid crystals”.

In 1888, botanist Friedrich Reinitzer studied crystals of cholesteryl benzoate from carrots and

observed that they have two melting points. When reaching T=145°C, crystals melt and turn into a

milky fluid. When reaching T=179°C, it changes again into a clear liquid.

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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A story of carrot and stick

F Reinitzer O Lehmann

In 1922, Georges Friedel realized the milky fluid is a new phase of matter, in-between an isotropic liquid

and a crystalline solid: a mesophase. He classified mesophases into nematic, smectic and cholesteric

phases. Today, there are columnar phases, blue phases…

G Friedel

The nematic phase

Phase transitions in LC

Introduction to homotopy

Reinitzer asked physicist Otto Lehmann about his observations. With the help of a polarizing

microscope, Lehmann noted in 1890 that the cloudy phase flowed like a liquid, but also had a stick-like

molecular structure that was somewhat ordered as in solid crystals. He coined the term “liquid crystals”.

In 1888, botanist Friedrich Reinitzer studied crystals of cholesteryl benzoate from carrots and

observed that they have two melting points. When reaching T=145°C, crystals melt and turn into a

milky fluid. When reaching T=179°C, it changes again into a clear liquid.

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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 How can an assembly of rodlike molecules arrange itself in a given volume ?

• Assumptions: 1) Attractive intermolecular forces are not taken into account.

2) Hard-rod model (diameter D, length L>>D)  steric effects.

maximal excluded volumeminimal excluded volume

2L

2D

L

2D

L

Vm=2D2L VM=2DL2

Onsager-Flory point of view

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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 How can an assembly of rodlike molecules arrange itself in a given volume ?

• In order to maximize the configuration entropy S=kB ln  (= to increase the free volume available per

molecule), the parallel configuration with a minimum excluded volume is favored by the assembly.

• Orientational ordering decreases orientational entropy but increases positional entropy. Onsager

showed that positional entropy can be gained at the expense of orientational entropy only beyond a

certain density.

 The matchbox problem

Onsager-Flory point of view

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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Mesogenic anatomy

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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5CB

C NCH3
CH2CH2CH2CH2

Mesogenic anatomy

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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aliphatic chain  flexible outer part  fluidity

5CB

C NCH3
CH2CH2CH2CH2

Mesogenic anatomy

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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aliphatic chain  flexible outer part  fluidity

5CB

C NCH3
CH2CH2CH2CH2

phenyl 

groups

• orientational order  anisotropy

• -electron cloud  high polarizability


Mesogenic anatomy

rigid core

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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carbonitrile

group

aliphatic chain  flexible outer part  fluidity

5CB

C NCH3
CH2CH2CH2CH2

C N
-+

 strong longitudinal 

dipole moment

phenyl 

groups

• orientational order  anisotropy

• -electron cloud  high polarizability




Mesogenic anatomy

rigid core

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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Mesogenic anatomy

methoxy group  transverse dipole 

moment

N CH O CH3CH3 CH2CH2CH2

MBBA 

aliphatic chains

 flexible outer parts  fluidity

• phenyl groups   anisotropy + polarisability

 strong dipole moment• Schiff’s base

rigid core

phenyl groups

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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Maier-Saupe-like standpoint 

 Orientation-dependent interaction between the molecules:

• The nematic phase is a compromise between the attractive Van der Waals interactions that align

rigid cores on average along the same direction (anisotropy) and the thermal agitation of the

aliphatic chains increasing the mean steric hindrance (fluidity).

C NCH3
CH2CH2CH2CH2

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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C NCH2

 Orientation-dependent interaction between the molecules:

• The nematic phase is a compromise between the attractive Van der Waals interactions that align

rigid cores on average along the same direction (anisotropy) and the thermal agitation of the

aliphatic chains increasing the mean steric hindrance (fluidity).

The nematic phase

Phase transitions in LC

Introduction to homotopy

Maier-Saupe-like standpoint 

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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C NCH2
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 Orientation-dependent interaction between the molecules:

• The nematic phase is a compromise between the attractive Van der Waals interactions that align
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• Dipole-dipole align anticolinearly: dimeric head-tail structure was confirmed by X-ray diffraction in

5CB and 7CB.

Leadbetter et al. J. Physique C1 26 (1975)

 Statistically, the assembly is unchanged when inverting heads and tails:

Z2 group = symmetry group of the nematic state

C NCH3
CH2CH2CH2CH2

 Orientation-dependent interaction between the molecules:

• The nematic phase is a compromise between the attractive Van der Waals interactions that align

rigid cores on average along the same direction (anisotropy) and the thermal agitation of the

aliphatic chains increasing the mean steric hindrance (fluidity).

The nematic phase

Phase transitions in LC

Introduction to homotopy

Maier-Saupe-like standpoint 

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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 How to characterize the assembly of rodlike molecules ?

The director field

• Orders of magnitude: - nematogen width 

- nematogen length  nm

- orientational correlation length  m

 long-range orientational order (and no positional order)

n

• The local average orientation of nematogens is given by a dimensionless unit “vector” n called

the director field = symmetry-axis of the assembly of rods.

 The nematic phase is statistically invariant under the elements of

SO(2) x Z2=O(2)

• A particular nematogen will generally not point

exactly in the direction of n:

n=ez

ex

ey





a

sin cos

sin sin

cos

=

 

 



 
 
 
 
 

a

o

A

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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 How to characterize the assembly of rodlike molecules ?

The director field

( ) ( )f f  = −

• Let be the probability to find the nematogen pointing in the direction a (within a solid angle

), then

1) f must not depend on  (cylindrical symmetry)

2) (Z2 symmetry)

The nematic phase

Phase transitions in LC

Introduction to homotopy

( ),f  

sind d d   =

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

n=ez

ex

ey





a
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 How to characterize the assembly of rodlike molecules ?

The director field

( ),f  

sind d d   =

( ) ( )f f  = −

• Let be the probability to find the nematogen pointing in the direction a (within a solid angle

), then

1) f must not depend on  (cylindrical symmetry)

2) (Z2 symmetry)

 First guess to characterize orientational order: a dipolar scalar parameter

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

( )
0

cos cos 2 sin 0  !!f d f



      =  =  n=ez

ex

ey





a
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 How to characterize the assembly of rodlike molecules ?

The director field

( ) ( )f f  = −

( )
0

cos cos 2 sin 0  !!f d f



      =  = 

• Let be the probability to find the nematogen pointing in the direction a (within a solid angle

), then

1) f must not depend on  (cylindrical symmetry)

2) (Z2 symmetry)

 First guess to characterize orientational order: a dipolar scalar parameter

The nematic phase

Phase transitions in LC

Introduction to homotopy

( ),f  

sind d d   =

A crash-course on liquids crystals

Topological defects in nematics
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 How to characterize the assembly of rodlike molecules ?

The director field

( ) ( )f f  = −

• Let be the probability to find the nematogen pointing in the direction a (within a solid angle

), then

1) f must not depend on  (cylindrical symmetry)

2) (Z2 symmetry)

 First guess to characterize orientational order: a dipolar scalar parameter

 Second guess: a quadrupolar scalar parameter

Ideally, the parameter should be normalized and mark a clear difference

between a narrow distribution about 0() and a random one.

2cos  

The nematic phase

Phase transitions in LC

Introduction to homotopy

( ),f  

sind d d   =

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

( )
0

cos cos 2 sin 0  !!f d f



      =  = 
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 How to characterize the assembly of rodlike molecules ?

The director field

• Tsvetkov (1942)
2

2

3 1
(cos ) cos

2 2
S P  = = −

• Specific cases: 1) Isotropic orientation

2) Perfectly aligned rods

3) Realistic nematic state

( )
1

0
4

f S


=  =

cos 1 1S =   =

0,3 0,8S 

• Can we do better ? Yes, a traceless symmetric second-rank tensor, the order parameter tensor or

Landau-De Gennes Q-tensor, defined as

3 1

2 2
ij i j ijQ S n n 

 
= − 

 
how strongly molecules

are aligned
what is the direction 

of the alignment

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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What happens when the temperature changes ?

The nematic phase

Phase transitions in LC

Introduction to homotopy

orientational order

no positional order

nematic mesophase T

n

0  S  1

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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What happens when the temperature changes ?

The nematic phase

Phase transitions in LC

Introduction to homotopy

n

orientational order

no positional order

nematic mesophase Tmolecular crystal

orientational order

positional order

• At low temperatures, thermal agitation is weak (low steric hindrance  closer nematogens) and

Van der Waals interactions prevail  molecular solid. Sometimes: smectic phases.

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

S~ 1 0  S  1
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The nematic phase

Phase transitions in LC

Introduction to homotopy

• At low temperatures, thermal agitation is weak (low steric hindrance  closer nematogens) and

Van der Waals interactions prevail  molecular solid. Sometimes: smectic phases.

• At high temperatures, thermal agitation prevails over Van der Waals interactions (nematogens

are distant from each other + force in d-6)  isotropic fluid. Sometimes: blue phases.

What happens when the temperature changes ?

n

orientational order

no positional order

nematic mesophase Tmolecular crystal

orientational order

positional order

no orientational order

no positional order

isotropic liquid

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

S~ 1 S = 00  S  1
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What happens when the temperature changes ?

The nematic phase

Phase transitions in LC

Introduction to homotopy

 Between these states, phase transitions with spontaneous symmetry breaking (SSB) are expected.

n
5CB

orientational order

no positional order

nematic mesophase Tmolecular crystal

orientational order

positional order

no orientational order

no positional order

isotropic liquid

297 K 308 K

SSB

SSB

S~ 1 S = 00  S  1

• At low temperatures, thermal agitation is weak (low steric hindrance  closer nematogens) and

Van der Waals interactions prevail  molecular solid. Sometimes: smectic phases.

• At high temperatures, thermal agitation prevails over Van der Waals interactions (nematogens

are distant from each other + force in d-6)  isotropic fluid. Sometimes: blue phases.

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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Landau classification

The nematic phase

Phase transitions in LC

Introduction to homotopy

• Depending on the behavior of the order parameter, Landau discriminates between

1) First-order (or discontinuous) phase transitions. The order parameter

is not continuous with respect to the control parameter T. The correlation

length is finite and the two phases coexist at the transition temperature.

Example: gas-liquid, …

2) Second-order (or continuous) phase transitions. The order parameter

is continuous with respect to the control parameter T. The correlation

length diverges, which forces the whole system to be in a unique phase

at the transition. Example: para-ferro, He I-He II…

S

T

LD Landau
S

T

1st order 2nd order

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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The nematic phase

Phase transitions in LC

Introduction to homotopy

LD Landau

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

Landau theory: the recipe

1. Define an order parameter. For a given system an order parameter

must be constructed. This is defined from an averaging procedure =

mean field theory, not sensitive to the microscopic details of the

system. The order parameter is zero in the disordered phase and non-

zero in the ordered phase.

2. Write a free energy functional. It is assumed to be an analytic

(typically polynomial expansion) function of the order parameter and is

constrained by the symmetries of the system. This is the most

important part of the theory, wherein most of the physics lies.

3. Temperature Dependence. It resides in the lowest order term in the

polynomial expansion of the free energy (usually linear). Other terms

can be assumed as constants near the phase transition (this is rigorous

for a second-order phase transition, and an approximation for a first-

order phase transition).
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Landau theory (1937)

The nematic phase

Phase transitions in LC

Introduction to homotopy

• At the transition T=Tc, if S0, then the free energy density can be power-expanded

with respect to the order parameter:

LD Landau

( ) ( ) ( )
( ) ( ) ( )2 3 42 3 4

0 1, ...
2 3 4

L

a T a T a T
f S T f T a T S S S S= + + + + +

• At each temperature, the stable state of the system (and hence the value of S) is determined by the

minimization of the Landau free energy.

• Phase transitions occur when the quadratic term in the Landau expansion changes sign whilst all the

other coefficients remain positive. If the driving parameter is temperature, the sign-changing term is

linear in temperature

coupling to an external field

(otherwise vanishes)

quadratic term

linear in 

temperature

( ) ( )2        0ca T a T T a= − 

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?



38/33
Sébastien Fumeron Topological defects

2nd order phase transitions

The nematic phase

Phase transitions in LC

Introduction to homotopy

• When odd-terms are removed and for , ( )
( ) 2 4, ...

2 4

c

L

a T T b
f S T S S

−
 = + +( )4 0a T b= 

( ) 3 0L
c

f
a T T S bS

S


= − + =


Minimization of free energy gives

SSB

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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2nd order phase transitions

The nematic phase

Phase transitions in LC

Introduction to homotopy

• When odd-terms are removed and for ,

Minimization of free energy gives

- For T>Tc, only one solution: S=0 (disordered high temperature phase).

SSB

( )
( ) 2 4, ...

2 4

c

L

a T T b
f S T S S

−
 = + +( )4 0a T b= 

( ) 3 0L
c

f
a T T S bS

S


= − + =



A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

S+S-

S S S

Lf f Lf
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2nd order phase transitions

The nematic phase

Phase transitions in LC

Introduction to homotopy

• When odd-terms are removed and for ,

S+S-

S S S

Lf f Lf

( )
( ) 2 4, ...

2 4

c

L

a T T b
f S T S S

−
 = + +( )4 0a T b= 

( ) /cS a T T b =  −

Minimization of free energy gives

- For T>Tc, only one solution: S=0 (disordered high temperature phase).

- For T<Tc , three roots: S=0 (maximum) and (minima)

( ) 3 0L
c

f
a T T S bS

S


= − + =



A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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2nd order phase transitions

The nematic phase

Phase transitions in LC

Introduction to homotopy

- Large scale fluctuations (the correlation length diverges at the transition)

 Pre-transitional effects: critical opalescence…

• The order parameter is continuous at T=Tc   Second-order phase transition:

- Thermodynamic properties obey scaling laws (critical exponents, universality):

                  Cc c c cS T T T T T T T T
   

 
− − −

− − − − …

• When odd-terms are removed and for , ( )
( ) 2 4, ...

2 4

c

L

a T T b
f S T S S

−
 = + +( )4 0a T b= 

( ) /cS a T T b =  −

Minimization of free energy gives

- For T>Tc, only one solution: S=0 (disordered high temperature phase).

- For T<Tc , three roots: S=0 (maximum) and (minima)

( ) 3 0L
c

f
a T T S bS

S


= − + =



A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

- First derivatives of free energy are continuous, but higher order ones are not…
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The nematic phase

Phase transitions in LC

Introduction to homotopy

• Things are different here as the order parameter vanishes in the disordered phase but is not

continuous at Tc (which is marking now the limit of existence of the high temperature phase): hence, S

is not necessarily small at the transition (unless the transition is weakly first order).

• One still consider the Landau expansion, but with a cubic term

1st order phase transitions

( )
( ) 2 3 4, ...

2 3 4

c

L

a T T c b
f S T S S S

−
 = − + + ( )3 0a T c= − 

• Two conditions to implement: - minimum of free energy:

- possibility of 2 coexisting phases

0Lf

S


=


( )( )2 0cS a T T cS bS − − + =

2

4
sp c

c
T T T

ab
 = + spinodal temperature

22

9
t c sp

c
T T T T

ab
 = +  temperature of 

the transition        

( ) ( ), 0, 0L Lf S T f T =  =

3 roots for S: 2 min, 1 max when

Possible when
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The nematic phase

Phase transitions in LC

Introduction to homotopy

1st order phase transitions

Lf

S

T > Tsp

T = Tsp

T = Tt

Tc < T < Tt

St=2c/ 3b

• There is a jump of the order parameter at the transition

 First-order phase transition:

- First derivatives of free energy are not

continuous  Latent heat.

- Scaling laws.

- Coexistence of the two phases (nucleation).

High T phase

Ex: gas
Low T phase

Ex: liquid

Remark: A first-order transition does not require

a change of symmetry (ex: water-steam).

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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The nematic phase

Phase transitions in LC

Introduction to homotopy

What about the IN transition ?
M Kleman et al. Phil Mag 86, 4117 (2006)

1- Spherulites formation = nucleation

2- Growth of domains

3- Threads when domains mingle ??
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What about the IN transition ?

1- Spherulites formation = nucleation

2- Growth of domains

3- Threads when domains mingle ??

Small discontinuities…

M Kleman et al. Phil Mag 86, 4117 (2006)

S Chandrasekhar, Liquid crystals (1992) 

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?



46/33
Sébastien Fumeron Topological defects

The nematic phase

Phase transitions in LC

Introduction to homotopy

What about the IN transition ?

1- Spherulites formation = nucleation

2- Growth of domains

3- Threads when domains mingle ??
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What about the IN transition ?

1- Spherulites formation = nucleation

2- Growth of domains

3- Threads when domains mingle ??

The isotropic-nematic phase transition is nearly 2nd order.

… and pretransitional effects…low latent heats…Small discontinuities…
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S Chandrasekhar, Liquid crystals (1992) 
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What about the IN transition ?

The isotropic-nematic phase transition is nearly 2nd order.
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M Kleman et al. Phil Mag 86, 4117 (2006)

S Chandrasekhar, Liquid crystals (1992) 

B Van Roie et al. PRE 72 (2005)
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A few definitions

• Topology is the branch of mathematics focusing on the properties that remain unchanged when a

topological space is “smoothly deformed” (neither torn apart nor punctured). When a topological

property changes, it occurs by integer steps, not gradually. In practice, we will consider manifolds for
which each point of the topological space locally looks like n.

The nematic phase

Phase transitions in LC

Introduction to homotopy
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A few definitions

• Topology is the branch of mathematics focusing on the properties that remain unchanged when a

topological space is “smoothly deformed” (neither torn apart nor punctured). When a topological

property changes, it occurs by integer steps (cf. Chern number), not gradually. In practice, we will
consider manifolds for which each point of the topological space locally looks like n.

• Algebraic topology (Poincaré’s former analysis situs) seeks algebraic invariants (numbers, abelians

groups, rings…) to study and classify topological spaces into equivalence classes. These objects may

characterize the connectedness, the number of holes, the existence of boundaries...

1 hole 3 holes

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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A few definitions

• Two manifolds are topologically equivalent or homeomorphic if there exists a bijective and continuous

map between them. These two manifolds have to be of the same dimension (Brouwer’s invariance of

domain theorem). Intuitively, it corresponds to a continuous deformation with no gluing or tearing.

 A homeomorphism, aka the

“teacup-to-donut” transform

1 hole 1 hole

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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A few definitions

• Homotopy provides a weaker notion of equivalence

between topological spaces than homeomorphism. It

corresponds to a continuous deformation where

bijectivity is not preserved, i.e. gluing, shrinking or

fattening the space is allowed: for instance, a loop

(dimension 1) is homotopic to a point (dimension 0).
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domain theorem). Intuitively, it corresponds to a continuous deformation with no gluing or tearing.

 A homeomorphism, aka the

“teacup-to-donut” transform

1 hole 1 hole
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The fundamental group

• The first homotopy group (or Poincaré group or fundamental group) 1(M) tests if all closed curves on a

manifold M are homotopic to a point. If it is the case, the group is trivial and 1(M)=I. When does this fail ?
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The fundamental group

• The first homotopy group (or Poincaré group or fundamental group) 1(M) tests if all closed curves on a

manifold M are homotopic to a point. If it is the case, the group is trivial and 1(M)=I. When does this fail ?

 When there are holes (spatial extent is for convenience = works for a point that is removed):

A A
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The fundamental group

A AA A
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M=2

• The first homotopy group (or Poincaré group or fundamental group) 1(M) tests if all closed curves on a

manifold M are homotopic to a point. If it is the case, the group is trivial and 1(M)=I. When does this fail ?

 When there are holes (spatial extent is for convenience = works for a point that is removed):
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The fundamental group

A AAA A
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The fundamental group

A AAA A
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M=2

• The first homotopy group (or Poincaré group or fundamental group) 1(M) tests if all closed curves on a

manifold M are homotopic to a point. If it is the case, the group is trivial and 1(M)=I. When does this fail ?

 When there are holes (spatial extent is for convenience = works for a point that is removed):
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The fundamental group

A AAA A

The first homotopy group also tests the simply-connectedness of the

manifold: in 2D, this is equivalent to test the existence of a 0D-hole.

simply-connected not simply-connected

The nematic phase

Phase transitions in LC

Introduction to homotopy

M=2

• The first homotopy group (or Poincaré group or fundamental group) 1(M) tests if all closed curves on a

manifold M are homotopic to a point. If it is the case, the group is trivial and 1(M)=I. When does this fail ?

 When there are holes (spatial extent is for convenience = works for a point that is removed):
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The fundamental group

• When 1(M)I, there are different families (« equivalence classes ») of homotopic loops sharing the

same winding number (Whitney-Graustein theorem). The winding number of a regular curve is the

number of times the tangent vector fully rotates counterclockwise when going once around the curve.

Non-homotopic loops

The nematic phase

Phase transitions in LC

Introduction to homotopy

n=0

n=1

M=2
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The fundamental group

• When 1(M)I, there are different families (« equivalence classes ») of homotopic loops sharing the

same winding number (Whitney-Graustein theorem). The winding number of a regular curve is the

number of times the tangent vector fully rotates counterclockwise when going once around the curve.

Homotopic loops of the same equivalence class

The nematic phase
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The fundamental group

• When 1(M)I, there are different families (« equivalence classes ») of homotopic loops sharing the

same winding number (Whitney-Graustein theorem). The winding number of a regular curve is the

number of times the tangent vector fully rotates counterclockwise when going once around the curve.

Homotopic loops of different equivalence classes

The nematic phase

Phase transitions in LC

Introduction to homotopy
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The fundamental group

• When 1(M)I, there are different families (« equivalence classes ») of homotopic loops sharing the

same winding number (Whitney-Graustein theorem). The winding number of a regular curve is the

number of times the tangent vector fully rotates counterclockwise when going once around the curve.

The nematic phase

Phase transitions in LC

Introduction to homotopy

n=1

n=2

Homotopic loops of different equivalence classesM=2
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The fundamental group

• In 3D, testing 1(M) means: can you lasso something ?

The nematic phase

Phase transitions in LC

Introduction to homotopy

n=0

M=3

n=0
1(M)=IThe answer is no:
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The fundamental group

The nematic phase

Phase transitions in LC

Introduction to homotopy

n=1

n=2

M=3

• In 3D, testing 1(M) means: can you lasso something ?

1(M) IThe answer is yes:
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The fundamental group

The nematic phase

Phase transitions in LC

Introduction to homotopy

M=3

n=1

n=2

In 3D, the first homotopy group

tests the existence of 1D-hole.

(cf Aharonov-Bohm phase)

1(M) IThe answer is yes:

• In 3D, testing 1(M) means: can you lasso something ?
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Topological defects everywhere?
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Other homotopy groups

• Similarly, 2(M) tests if all closed surfaces on a manifold M are homotopic to a point.

M=3
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The nematic phase

Phase transitions in LC

Introduction to homotopy

Other homotopy groups

• Similarly, 2(M) tests if all closed surfaces on a manifold M are homotopic to a point.
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The nematic phase

Phase transitions in LC

Introduction to homotopy

Other homotopy groups

• Similarly, 2(M) tests if all closed surfaces on a manifold M are homotopic to a point.

M=3

In 3D, the second homotopy

group tests the existence of

0D-hole.

2(M) I

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?
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A
B

The nematic phase

Phase transitions in LC

Introduction to homotopy

Other homotopy groups

• 0(M) ) tests if the topological space is (pathwise) connected, i.e. if for any pair of points, one can find

a path between them that remains in the topological space. Intuitively, it corresponds to the notion of a

space that is in one whole piece.

A
B

B
A A

B

Connected

Not connected

1D-hole 2D-hole

A crash-course on liquids crystals
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Topological defects everywhere?
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Use for phase transitions

The nematic phase

Phase transitions in LC

Introduction to homotopy

 The bare minimum

• In practice, homotopy is mostly of matter of counting holes… but p-holes in n-dimensional manifolds

and it answers the question: what kinds of singularities=defects are there ?

• In dimension n, if the kth homotopy group k(M) ≠ I, then topologically defects of dimension n-1-k

appear.

 Connection with spontaneous symmetry breaking

During a phase transition with a symmetry breaking pattern G → H, defects arise according to the

topology of the order parameter space M= G/H.

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?



75/33
Sébastien Fumeron Topological defects

Application to the IN transition

O(2) x T(3) SO(3) x T(3)symmetry

group
space group GE

n
5CB

orientational order

no positional order

nematic mesophase Tmolecular solid

orientational order

positional order

no orientational order

no positional order

isotropic liquid

297 K 308 K

SSB

SSB

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

 For the isotropic-nematic phase transition, G=SO(3) and H=O(2)
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Topology of Boy surface

• Immersion of the real projective plane in 3-dimensional space

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

 How to determine the topology of something like like this ?   

M =SO(3)/O(2) ~ S2/ Z2


• For the isotropic-nematic phase transition, the symmetry-breaking pattern is SO(3) → O(2)

manifold=« Boy surface »
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Topology of Boy surface

 The Euler-Poincaré characteristic in 3 definitions

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

• Genus = number of holes:

(orientable surface)  
𝜒=2-2g

𝜒=F-A+S• Triangulation and polygons

• Gauss-Bonnet theorem
1

2 torus
FdS


= 
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Topology of Boy surface

 The Euler-Poincaré characteristic in 3 definitions

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

• Genus = number of holes:

(orientable surface)  
𝜒=2-2g 𝜒=0   g=1

𝜒=F-A+S• Triangulation and polygons 𝜒=4-6+2=0

A

A

A

A

B

• Gauss-Bonnet theorem
1

2 torus
FdS


= 

   ( )cos cos , cos sin , sinR r R r r    + + OM = ( )
( )

cos
, 0

cos
F r

r R r


 


=  =

+

1(T
2)=ℤ2
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Topology of Boy surface

 Immersion of the real projective plane in 3-dimensional space

The nematic phase

Phase transitions in LC

Introduction to homotopy

Genus = number of holes:

(non-orientable surface) 

Poincaré-Euler characteristic 

g = 2 - 𝜒=1

1 hole  non-trivial fundamental group 

=
𝜒=F-A+S=4-6+3=1A

B

B

A

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

C
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Topology of Boy surface

 Content of homotopy groups

The nematic phase

Phase transitions in LC

Introduction to homotopy

L Michel. Rev Mod Phys 52(3) (1980)
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Topology of Boy surface

 Content of homotopy groups

0(M)= I

No domain wall
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Topology of Boy surface

 Content of homotopy groups

0(M)= I

No domain wall
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P. Pieranski, Paris Orsay.

Line defects: disclinations, loops…

1(M)=Z2
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Topology of Boy surface

P. Pieranski, Paris Orsay.

Line defects: disclinations, loops…

1(M)=Z2

Monopoles: radial and hyperbolic hedgehogs…

 Content of homotopy groups

0(M)= I

No domain wall

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

2(M)=ℤ



84/33
Sébastien Fumeron Topological defects

Topology of Boy surface

P. Pieranski, Paris Orsay.

Line defects: disclinations, loops…

1(M)=Z2
2(M)=ℤ

 Content of homotopy groups

0(M)= I

No domain wall

The nematic phase

Phase transitions in LC

Introduction to homotopy

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

Monopoles: radial and hyperbolic hedgehogs…
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The nematic phase

Phase transitions in LC

Introduction to homotopy

• Topological number

BG Chen et al. PRL 110, 237801 (2013)

PJ Ackerman et al. PRE 90 (2014)

• Hypothetic topologically stable configuration (soliton) of the pion field, predicted in the context of

Quantum Chromodynamics (Tony Skyrme, 1962). Also reported in solid-state physics (spintronics,

superconductivity…), Bose-Einstein condensates… and of course in soft-matter.

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

 Content of homotopy groups

3(M)=ℤ Textures: Skyrmions, Hopf fibrations…

Topology of Boy surface
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II Smalyukh Rep Prog Phys 83 (2020)

Hopf link Solomon linkFourfold -Knot

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

 Content of homotopy groups

3(M)=ℤ Textures: Skyrmions, Hopf fibrations…

Topology of Boy surface

The nematic phase

Phase transitions in LC

Introduction to homotopy



87/33
Sébastien Fumeron Topological defects

Content of 𝜋1

The nematic phase

Phase transitions in LC

Introduction to homotopy

1(ℝP2)=Z2={0,1}

A

A’=A
O

stable

O

A

unstable

 What does Z2 mean for line defects?

There are only two equivalence classes for the linear defects:

A crash-course on liquids crystals

Topological defects in nematics

Topological defects everywhere?

These two classes of defects can be combined according to the algebra of 𝕫/2𝕫:

0+1=1 1+1=00+0=0
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Next lecture…

 A riddle: what are these ?
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E Oton et al. Sci Rep 7 (2017)

Recent topic (G Gray, 1956) because they only

exist within a very narrow range of T < 1°C.

« They are totally useless, I think, except for one important intellectual

use, that of providing tangible examples of topological oddities, and so

helping to bring topology into the public domain of science »

FC Frank

disclinations network Kossel rings
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